Parallel Mandelbrot Set Using Golang

Gisela Difini
ITNEXT
Published in
5 min readJun 18, 2021

--

This post explains how to generate a Mandelbrot set in parallel using Golang goroutines.

Source code here: https://github.com/GiselaMD/parallel-mandelbrot-go

Mandelbrot Set

For those that are interest in what’s a Mandelbrot set, check https://en.wikipedia.org/wiki/Mandelbrot_set

The set formula is based on the position of x and y coordinates:

x = x*x — y*y + a
y = 2*x*y + b

We also check if x*x + y*y > 4 to set the color.

But instead of going into math details, I would like to explain how we can use goroutines to render that Mandelbrot set on the screen.

Getting into the code

This program is based on 4 main values that are going to impact the performance and resolution of the Mandelbrot set.

maxIter = 1000
samples = 200
numBlocks = 64
numThreads = 16
  • maxIter defines how many times the Mandelbrot formula will be calculated, resulting on x and y values.
  • samples is the number of interactions that generates RGB color values.
  • numBlock is in how many pieces do you want to divide the image.
  • numThreads is the number of goroutines that will be created.

To render the result on the screen I’ve used the Pixel library (github.com/faiface/pixel). On the main function we have something like this:

func main() {
pixelgl.Run(run)
}

Calling pixelgl.Run puts PixelGL in control of the main function and there’s no way for us to run any code in the main function anymore. That’s why we need to pass another function inside pixelgl.Run, which is the run function.

func run() {
log.Println("Initial processing...")
pixelCount = 0
img = image.NewRGBA(image.Rect(0, 0, imgWidth, imgHeight))
cfg := pixelgl.WindowConfig{
Title: "Parallel Mandelbrot in Go",
Bounds: pixel.R(0, 0, imgWidth, imgHeight),
VSync: true,
}

win, err := pixelgl.NewWindow(cfg)
if err != nil {
panic(err)
}
log.Println("Rendering...")
start := time.Now()
workBuffer := make(chan WorkItem, numBlocks)
threadBuffer := make(chan bool, numThreads)
drawBuffer := make(chan Pix, pixelTotal)

workBufferInit(workBuffer)
go workersInit(drawBuffer, workBuffer, threadBuffer)
go drawThread(drawBuffer, win)

for !win.Closed() {
pic := pixel.PictureDataFromImage(img)
sprite := pixel.NewSprite(pic, pic.Bounds())
sprite.Draw(win, pixel.IM.Moved(win.Bounds().Center()))
win.Update()

if showProgress {
fmt.Printf("\r%d/%d (%d%%)", pixelCount, pixelTotal, int(100*(float64(pixelCount)/float64(pixelTotal))))
}

if pixelCount == pixelTotal {
end := time.Now()
fmt.Println("\nFinished with time = ", end.Sub(start))
pixelCount++

if closeOnEnd {
break
}
}
}
}

The run function is responsible for initialising and updating the window as well as creating the channels that will be used for our goroutines.

The workBuffer is the channel responsible for adding the information of each block (based on numBlocks). Inside the workBufferInit, the initial and final x and y values are sent to the channel so that each goroutines that gets that piece of the image to work on can calculate the color without needing to know the global data, only what’s the range of x and y of that block.

func workBufferInit(workBuffer chan WorkItem) {
var sqrt = int(math.Sqrt(numBlocks))

for i := sqrt - 1; i >= 0; i-- {
for j := 0; j < sqrt; j++ {
workBuffer <- WorkItem{
initialX: i * (imgWidth / sqrt),
finalX: (i + 1) * (imgWidth / sqrt),
initialY: j * (imgHeight / sqrt),
finalY: (j + 1) * (imgHeight / sqrt),
}
}
}
}

The threadBuffer is responsible for creating goroutines based on the numThreads and controlling when a goroutine is done with its work so we can run another in its place. That logic inside workersInit goroutine.

func workersInit(drawBuffer chan Pix, workBuffer chan WorkItem, threadBuffer chan bool) {
for i := 1; i <= numThreads; i++ {
threadBuffer <- true
}

for range threadBuffer {
workItem := <-workBuffer

go workerThread(workItem, drawBuffer, threadBuffer)
}
}

For each workItem that we receive from the workBuffer (each block) we create a goroutine called workerThread to handle all the Mandelbrot set logic.

func workerThread(workItem WorkItem, drawBuffer chan Pix, threadBuffer chan bool) {
for x := workItem.initialX; x < workItem.finalX; x++ {
for y := workItem.initialY; y < workItem.finalY; y++ {
var colorR, colorG, colorB int
for k := 0; k < samples; k++ {
a := height*ratio*((float64(x)+RandFloat64())/float64(imgWidth)) + posX
b := height*((float64(y)+RandFloat64())/float64(imgHeight)) + posY
c := pixelColor(mandelbrotIteraction(a, b, maxIter))
colorR += int(c.R)
colorG += int(c.G)
colorB += int(c.B)
}
var cr, cg, cb uint8
cr = uint8(float64(colorR) / float64(samples))
cg = uint8(float64(colorG) / float64(samples))
cb = uint8(float64(colorB) / float64(samples))

drawBuffer <- Pix{
x, y, cr, cg, cb,
}

}
}
threadBuffer <- true
}
func mandelbrotIteraction(a, b float64, maxIter int) (float64, int) {
var x, y, xx, yy, xy float64

for i := 0; i < maxIter; i++ {
xx, yy, xy = x*x, y*y, x*y
if xx+yy > 4 {
return xx + yy, i
}
// xn+1 = x^2 - y^2 + a
x = xx - yy + a
// yn+1 = 2xy + b
y = 2*xy + b
}

return xx + yy, maxIter
}

func pixelColor(r float64, iter int) color.RGBA {
insideSet := color.RGBA{R: 0, G: 0, B: 0, A: 255}

// check if it's inside the set
if r > 4 {
// return hslToRGB(float64(0.70)-float64(iter)/3500*r, 1, 0.5)
return hslToRGB(float64(iter)/100*r, 1, 0.5)
}

return insideSet
}

The drawBuffer is the channel that receives the values from the goroutines that are calculating the Mandelbrot set and once it receives data, the drawThread goroutine sets the pixel RGB value into the image and then the run function updates the window.

func drawThread(drawBuffer chan Pix, win *pixelgl.Window) {
for i := range drawBuffer {
img.SetRGBA(i.x, i.y, color.RGBA{R: i.cr, G: i.cg, B: i.cb, A: 255})
pixelCount++
}
}

We also have some utils functions for generating random data and converting hsl and hue to RGB:

var randState = uint64(time.Now().UnixNano())

func RandUint64() uint64 {
randState = ((randState ^ (randState << 13)) ^ (randState >> 7)) ^ (randState << 17)
return randState
}

func RandFloat64() float64 {
return float64(RandUint64() / 2) / (1 << 63)
}

func hueToRGB(p, q, t float64) float64 {
if t < 0 { t += 1 }
if t > 1 { t -= 1 }
switch {
case t < 1.0 / 6.0:
return p + (q - p) * 6 * t
case t < 1.0 / 2.0:
return q
case t < 2.0 / 3.0:
return p + (q - p) * (2.0 / 3.0 - t) * 6
default:
return p
}
}

func hslToRGB(h, s, l float64) color.RGBA {
var r, g, b float64
if s == 0 {
r, g, b = l, l, l
} else {
var q, p float64
if l < 0.5 {
q = l * (1 + s)
} else {
q = l + s - l * s
}
p = 2 * l - q
r = hueToRGB(p, q, h + 1.0 / 3.0)
g = hueToRGB(p, q, h)
b = hueToRGB(p, q, h - 1.0 / 3.0)
}
return color.RGBA{ R: uint8(r * 255), G: uint8(g * 255), B: uint8(b * 255), A: 255 }
}

Final result:

Parallel Mandelbrot gif
Parallel Mandelbrot execution

Long story short: as the goroutines work are completed, new ones are instantiated and continue processing the blocks until the entire image is rendered on the screen.

That’s it for today!

Hope you enjoy it 😊

🇧🇷 This post is also available in Portuguese published by Daniel who collaborated in this project. Check his post: https://danielferreiradev.medium.com/fractal-de-mandelbrot-paralelo-usando-golang-4ba497d9bbc5

Source code here: https://github.com/GiselaMD/parallel-mandelbrot-go

--

--